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Odd-Excited Binomial States of the Radiation Field
and Some of Their Statistical Properties
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In this paper a new state called odd-excited binomial state (OEBS) is introduced. It
interpolates between the odd number state and the odd-excited coherent state. We discuss
some statistical properties, such as the Glauber second-order correlation function and
squeezing phenomenon (normal and amplitude-squared squeezing) for this state. The
quasiprobability distribution functions (HusimiQ-function and WignerW-function)
are also examined.
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1. INTRODUCTION

The most familiar state for the electromagnetic field is the Fock number
state|n〉, which is an eigenstate of the photon number operatorn̂ = a†a, i.e.,
a†a|n〉 = n|n〉, wherea anda† are the annihilation and creation operators of the
electromagnetic field, respectively. Fock states can be produced by applying the
operatora†n on the vacuum state|0〉 such that|n〉 = a†n√

n!
|0〉. On the other hand,

the coherent state|α〉 can be obtained by applying the displacement operator
D̂(α) = exp(αa† − α∗a) on the vacuum state, whereα is a complex amplitude.

Recently new quantum states have been introduced and investigated besides
the number states and the coherent states. One of these states is the binomial state
(BS) (Stoleret al., 1985) which interpolates between the number state and the
coherent state. Another state has been introduced to bridge between the thermal and
the coherent states; it is the negative binomial state (NBS) (Agarwal, 1992; Joshi
and Lawande, 1989, 1991). As for a further example, the generalized geometric
state has been introduced to interpolate between the number state and the (nonpure)
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chaotic state (Batarfiet al., 1995; Obadaet al., 1993, 1997). Furthermore, the even
(odd) BS, interpolates between the even (odd) coherent state and the even (odd)
number state (Abdallaet al., 1994; Obadaet al., 1996).

Recently an excited binomial state (EBS) has been introduced and some of
its properties have been discussed (Wang and Fu, 2000). These states interpolate
between the Fock states and the excited coherent state (Wang and Fu, 2000).

In the present work we shall discuss the so-called odd-excited binomial states
(OEBS) of the radiation field. They are introduced by repeated application of the
photon creation operator on two BS. They may also be produced by superposition
of two EBS. These states interpolate between the odd number state and the odd-
excited coherent state. Therefore we shall devote the next section to the introduction
of the OEBS and to the discussion of the statistical properties of the Glauber
second-order correlation function. In Section 3 we shall consider the phenomenon
of squeezing, especially the normal and the amplitude-squared squeezing. The
quasipropability distribution function (W- andQ-functions) related to the OEBS
are calculated in Section 4. Finally conclusions are drawn in Section 5.

2. THE OEBS

The EBS (see Wang and Fu, 2000) is defined as follows:

|k, η, M〉 = λ
M∑

n=0

√(
M

n

)
ηn(1− |η|2)

M−n
2 a†k|n〉

= λ
M∑

n=0

CM
n (k)|n+ k〉 (1)

whereλ is the normalization constant,

CM
n (k) =

√(
M

n

)
ηn(1− |η|2)

M−n
2

√
(n+ k)!

n!
. (1a)

We introduce the OEBS through the definition

|k, η, M〉o = λ′
∑
n=0

CM
n (k)|n+ k〉 (2)

such that the state|n+ k〉 is always odd. Therefore we have the following cases:

(i) for evenk, i.e.,k = 2k0

|2k0, η, M〉o = λ0

[ M−1
2 ]∑

n=0

CM
2n+1(2k0)|2n+ 2k0+ 1〉 (3a)
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(ii) for odd k, i.e.,k = 2k1+ 1

|2k1+ 1, η, M〉o = λ′0
[ M

2 ]∑
s=0

CM
2s(2k1+ 1)|2s+ 2k1+ 1〉 (3b)

whereCM
2n+1(2k0) andCM

2s(2k1+ 1) are given from (1a), with [N2 ] be-
ing the largest integer less than or equal to (N

2 ). λ0 and λ′0 are the
normalization constants of OEBS. Fork(even) andk(odd), respectively,
given by

|λ0|−2 =
[ M−1

2 ]∑
n=0

∣∣CM
2n+1(2k0)

∣∣2 (4)

|λ′0|−2 =
[ M

2 ]∑
s=1

∣∣CM
2s(2k1+ 1)

∣∣2 (5)

CM
2n+1(2k0) andCM

2s(2k1+ 1) are the probability amplitudes of OEBS.
Heren,s, andM are integers andη is generally complex with 0≤ |η| ≤ 1.

Now we shall calculate the mean photon numbern̄, which is the expectation
value of the number operatorn̂ = a†a with respect to the OEBS of Eqs. (3a) and
(3b). It is easy to show that

(i) for evenk

〈n̂〉o = |λ0|2
[ M−1

2 ]∑
n=0

(2n+ 2k0+ 1)
∣∣CM

2n+1(2k0)
∣∣2 (6a)

(ii) for odd k

〈n̂〉o = |λ′0|2
[ M

2 ]∑
s=0

(2s+ 2k1+ 1)
∣∣CM

2s(2k1+ 1)
∣∣2 (6b)

The expectation value ofn̂2, namelyo〈2k0, η, M |n̂2|2k0, η, M〉o ando〈2k1+ 1, η,
M |n̂2|2k1+ 1, η, M〉o are given by

(i) for evenk

〈n2〉o = |λ0|2
[ M−1

2 ]∑
n=0

(2n+ 2k0+ 1)2
∣∣CM

2n+1(2k0)
∣∣2 (7a)
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(ii) for odd k

〈n2〉o = |λ′0|2
[ M

2 ]∑
s=0

(2s+ 2k1+ 1)2
∣∣CM

2s(2k1+ 1)
∣∣2 (7b)

We shall employ the Glauber second-order correlation function to discuss some
statistical properties such as sub-Poissonian distribution (Perina, 1984; Walls and
Milburn, 1994), which is characteristic of nonclassical states. The Glauber second-
order correlation functiong(2)(0) is defined by

g(2)(0)= 〈a
†2a2〉
〈a†a〉2 =

〈n2〉 − 〈n〉
〈n〉2 (8)

A light field has a sub-Poissonian distribution ifg(2)(0) < 1, which is a nonclassical
effect; super-Poissonian distribution ifg(2)(0) > 1, which is a classical effect; and
Poissonian distribution (characteristic of the coherent state) ifg(2)(0)= 1.

It is apparent from Eqs. (6) and (7) together with Eq. (8) that the value of
g(2)(0) is always less than one for all values ofM , k, and|η|, which signifies the
sub-Poissonian statistics of the field in OEBS. In Fig. 1, we plotg(2)(0) of OEBS
as a function ofη for different values ofM andk (η is taken to be real). It is to
be noticed that asη→ 0, the first state (first odd numberk) is present and the
limiting value for the Fock state is obtained and the value ofg(2)(0) increases ask
increases. On the other hand, asη→ 1 with the increase in the parameterM , the
function g(2)(0) approaches unity more rapidly and persists because the limiting
Fock state in this case is the largest odd state less than or equal to (M + k).

3. NORMAL SQUEEZING

The squeezing phenomenon represents one of the interesting phenomena in
the field of quantum optics, and is a direct consequence of Heisenberg’s uncer-
tainty principle. It reflects the reduced quantum fluctuations in one of the field
quadratures at the expense of stretching the other quadrature. The state is said to
be squeezed if it has less noise than the vacuum state in one of the field quadratures.
The investigation of normal squeezing is based on defining two field quadrature
operators by

X̂ = 1

2
(a+ a†) and Ŷ = 1

2i
(a− a†) (9)

These operators satisfy the commutation relation

[ X̂, Ŷ] = i

2
(10)
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Fig. 1. g(2) parameter of the odd EBS as a function ofη.



P1: FYJ

International Journal of Theoretical Physics [ijtp] pp620-ijtp-452102 October 28, 2002 14:25 Style file version May 30th, 2002

1760 Obada, Darwish, and Salah

Therefore the uncertainty relation for the variances ofX̂ andŶ is

(1X̂)2(1Ŷ)2 ≥ 1

16
(11)

where the quadrature variances are

(1X̂)2 = 〈X̂2〉 − 〈X̂〉2 (12)

and

(1Ŷ)2 = 〈Ŷ2〉 − 〈Ŷ〉2 (13)

The field is said to be squeezed if12X or12Y ≤ 1
4.

Then normal squeezing holds if

S1 = 4(1X̂)2− 1 < 0 (14a)

S2 = 4(1Ŷ)2− 1 < 0 (14b)

The squeezing parameters depend on the expectation values of the creation and
annihilation operator (a† anda) and their powers. From the definition of the OEBS
(Eqs. (3) and (4)) it is abvious that the expectation values of operatorsa anda†

vanish. But the expectation values of operatorsa2 anda†2 are

(i) for evenk

o〈2k0, η, M |a†2|2k0, η, M〉o = |λ0|2 η∗2

(1− |η|2)

[ M−2
2 ]∑

n=0

[(
M

2n+ 1

)

× (2n+ 2k+ 3)!

(2n+ 3)!
[(M − 2n− 1)(M − 2n− 2)]

1
2

× (|η|2)(2n+1)(1− |η|2)M−2n−1
]

(15a)

(ii) for odd k

o〈2k1+ 1, η, M |a†2|2k1+ 1, η, M〉o = |λ′0|2
η∗2

(1− |η|2)

[ M−1
2 ]∑

s=0

[(
M

2s

)

× (2s+ 2k+ 2)!

(2s+ 2)!
[(M − 2s)(M − 2s− 1)]

1
2 (|η|2)(2s)(1− |η|2)M−2s

]
(15b)

and〈a†2〉 = 〈a2〉∗.
We can study the squeezing effects of OEBS by combining Eqs. (3), (6), (14),
and (15).
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4. AMPLITUDE-SQUARED SQUEEZING (ASS)

The phenomenon of squeezing has been extended to higher order squeezing.
The concept of higher order squeezing has been discussed by many authors (Hillery,
1987a,b, 1989; Hong and Mandel, 1985a,b; Perina, 1984; Walls and Milburn,
1994) and in this section we discuss the production of higher order squeezing in
the sense of Hillery’s definition (Hillery, 1987a,b). This type of squeezing is known
as ASS and arises in a natural way in second-harmonic generation and in a number
of nonlinear optical processes (Hillery, 1987a,b). This phenomenon is discussed
through the fluctuations in the variances of the operators (Hillery, 1989)

d̂0 = 1

4
(aa† + a†a) (16a)

d̂1 = 1

4
(a2+ a†2), (16b)

d̂2 = 1

4i
(a2− a†2) (16c)

Operatorsd̂1 andd̂2 satisfy the commutation relation

[d̂1, d̂2] = i d̂0 (17)

so that the uncertainty principle applied tod̂1 andd̂2 is

(1d̂1)2(1d̂2)2 ≥ 1

4
〈d̂0〉2 (18)

Therefore the condition for ASS is

q1 = (1d̂1)2− 1

2
|〈d̂0〉| < 0 (19a)

or

q2 = (1d̂2)2− 1

2
|〈d̂0〉| < 0 (19b)

The expectation value of the operatora†4 can be seen to take the form

(i) for evenk

o〈2k0, η, M |a†4|2k0, η, M〉o = |λ0|2 η∗4

(1− |η|2)2

[ M−4
2 ]∑

n=0

[(
M

2n+ 1

)

× (2n+ 2k+ 5)!

(2n+ 5)!
[(M − 2n− 1)(M − 2n− 2)(M − 2n− 3)

× (M − 2n− 4)]
1
2 (|η|2)2n+1(1− |η|2)M−2n−1

]
(20a)
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(ii) for odd k

o〈2k1+ 1, η, M |a†4|2k1+ 1, η, M〉o = |λ′0|2
η∗4

(1− |η|2)2

[ M−3
2 ]∑

s=0

[(
M

2s

)

× (2s+ 2k+ 5)!

(2s+ 4)!
[(M − 2s)(M − 2s− 1)(M − 2s− 2)

× (M − 2s− 3)]
1
2 (|η|2)2s(1− |η|2)M−2s

]
(20b)

Combining Eqs. (6), (7), (19), and (20), we can study the squeezing effects of the
OEBS. Numerical investigations show that no normal squeezing exists for OEBS
when takingη real but the ASS is present. In Fig. 2 we plot the quantityq1 of
the OEBS as a function of the parameterη for different values ofk and M . In
these figures we see that asM increases, oscillations appear for small values of
η; thus the behavior of the curves differs considerably from the odd BS (k = 0).
Furthermore, we can see that for the sameM the point of maximum squeezing
shifts very slightly to lowerη ask increases. However, asM increases, the degree
of ASS increases.

5. QUASIPROBABILITY DISTRIBUTION FUNCTIONS

The quasiprobability distribution functions (Cahill and Glauber, 1969; Hillery
et al., 1984; Wigner, 1932) are important tools to discuss the statistical description
of a microscopic system, and also to provide insight into the nonclassical features
of the radiation field. There are three types of these functions: theP (Glauber–
Sudershan) function,W (Wigner) function, andQ (Husimi) function.

In the present section we turn our attention to examineQ- andW-functions
for the OEBS. It is well known thatQ-function is positive definite at any point in
the phase space for any quantum state. It can be written in an equivalent form as the
expectation value of the density matrix ˆρ with respect to the coherent state|α〉 as

〈α|ρ̂|α〉 = πQ(α) (21)

where

|α〉 = exp

(
−1

2
|α|2

) ∞∑
`=0

α`√
`!
|`〉 (22)

(α = x + iy is a complex number), and the density matrix in this case has the form

ρ̂0 = |2k0, η, M〉o o〈2k0, η, M | for evenk

or

ρ̂0 = |2k1+ 1, η, M〉o o〈2k1+ 1, η, M | for oddk
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Fig. 2. The amplitude-squared squeezing for odd EBS.
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Thus theQ-function is given by the following expressions:

(i) for evenk

Q0(α) = π−1|λ0|2 e−|α|
2|G0|2 (23a)

where

G0 =
[ M−1

2 ]∑
n=0

[√
M !

(M − 2n− 1)!

(α∗)2n+2k0+1

(2n+ 1)!
η2n+1(1− |η2|) M−2n

2

]
(ii) for odd k

Q0(α) = π−1|λ′0|2 e−|α|
2|G1|2 (23b)

where

G1 =
[ M

2 ]∑
s=0

[√
M !

(M − 2s)!

(α∗)2s+2k1+1

(2s)!
η2s(1− |η|2)

M−2s
2

]
In Fig. 3 we have plotted theQ-function for different values ofM , k, andη. We
find that for smallη (η = 0.1) the first odd state≤k is the most effective one, as
shown in Fig. 3(a). Whenη increases more states come to affect theQ-function.
This means spreading out in the phase space and its diameter increases as the
number of states increases as shown in Fig. 3(b) and (c). This can also be observed
by increasing the value of the parameterM .

The W-function W(α) can take on negative values for some states and this
is regarded as an indication of the nonclassical behavior. We shall take diagonal
terms into account only inW-function which is given by

(i) for evenk, i.e.,k = 2k0

W(α) = − 2

π
|λ0|2 e−2|α|2

[ M−1
2 ]∑

n=0

[(
M

2n+ 1

)
(|η|2)2n+1

× (1− |η|2)M−2n−1 (2n+ 2k0+ 1)!

(2n+ 1)!
L2n+2k0+1(4|α|2)

]
(24)

whereL2n+2k0+1(4|α|2) is Laguerre polynomials of order (2n+ 2k0+ 1),
where

Lr (x) =
r∑

m=0

(−1)m
(r )!(x)m

(m!)2(r −m)!

(ii) for odd k, i.e.,k = 2k1+ 1

W(α) = − 2

π
|λ′0|2 e−2|α|2

[ M
2 ]∑

s=0

[(
M

2n

)
(|η|2)2s

× (1− |η|2)M−2s (2s+ 2k1+ 1)!

(2s)!
L2s+2k1+1(4|α|2)

]
(25)
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Fig. 3. Q-function corresponding to odd EBS.
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To show the nonclassical properties we plot the functionW(α) in Fig. 4 for
different values ofM , k, andη. Whenη is small (η = 0.2), M = 5, andk = 0,
theW(α) for OEBS has a nonclassical character which appears clearly with large
negative values, with a spike centered at the origion (see Fig. 4(a)). Increasing

Fig. 4. Wigner function corresponding to odd EBS.
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Fig. 4. (Continued)

k, very small oscillations surrounding the spice in theW-function are observed
for the OEBS|5, 2, 0.2 > odd in contrast to the odd BS (El-Oranyet al., 1999).
However, increasing|η| to 0.6, adds more wobbles (see Fig. 4(c)). AsM increases
(M = 11), we note a remarkable change in the shape of the function, as shown in
Fig. 4(d).
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6. CONCLUSION

In this paper, we have introduced the OEBS. Properties of these states are
considered. It has been found that these states do not show normal squeezing, but
ASS is exhibited for such states. The second correlation function is discussed and
partial coherence is shown for various parameters. The quasi-distribution func-
tions especially theW- andQ-functions are investigated and studied numerically
for certain parameters. Nonclassical signatures for these states are present in the
figures of the Wigner function in particular. These functions are not just theoretical
curiosities, they can be detected in homodyne experiments (Leonhardt, 1997).
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